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2 Introduction 

  Fuel Cells are complex multi-domain 
dynamic systems 
  Electrical, electrochemical, fluidic, thermal 

phenomena are coupled 
  Controlling such systems is a challenge to 

ensure efficiency and reliability 
  Modelling fuel cells systems implies 

  Interoperability 
  Multi-disciplinary and dynamic simulation 

environment 
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Power Based Fuel Cell Applications 
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Typical Fuel Cell PEM Control System 
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Typical Fuel Cell PEM Control System 

ELECTRICAL SUB-
SYSTEM 
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Typical Fuel Cell PEM Control System 

ELECTRICAL SUB-
SYSTEM 
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Typical Fuel Cell PEM Control System 

PNEUMATIC SYSTEM 
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Typical Fuel Cell PEM Control System 

PNEUMATIC SYSTEM 



ROMAN Cédric – roman@amesim.com 

9 
Typical Fuel Cell PEM Control System 

COOLING SYSTEM 
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Typical Fuel Cell PEM Control System 

COOLING SYSTEM 
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Typical Fuel Cell PEM Control System 

STACK SYSTEM 
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12 Introduction 

  State of the art of PEMFC stack numerical 
models 
  Dynamic model of analogic electrical equivalent 

system 
  Pneumatics and chemicals are modelled with equivalent 

electric elements 

  Quasi-steady state model based on CFD code 
  Limited by boundary conditions 
  CPU cost: days on parallelized clusters 

  Bond-Graph model 
  Multi-domain (electrical/chemical/pneumatic)  
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Stack System 
  AMESim Model for stack modelling 

  Inspired from Bond Graph 
  Physical model of electrical, electrochemical, 

pneumatic and thermal phenomena 
  Stack design and optimization 
  Dynamic modelling of pneumatics, chemical 

reactions, etc… 



ROMAN Cédric – roman@amesim.com 

14 

Diffusion Protonic 
resistance 

PEM cell Model structure (Explanations) 

membrane 
CL 
GDL 

width 

length/nel 

heigth 

x 

y 

H+ H+ H+ H+ H+ 

O2 

O2 O2 O2 

O2 

Porous media 

Catalyst 

Conductive  

flow rate 

Protons from 
anodic reaction 

gas mixture 
(O2,N2,H2O) 

Cathode side 



ROMAN Cédric – roman@amesim.com 

15 

Current 
prediction 

& 

Ohmic losses 

PEM cell Model structure (Explanations) 

membrane 
CL 
GDL 

e- e- e- 
e- e- 

H2O H2O H2O H2O H2O 

Electrochemical 
reaction 

Nernst equation 

Reaction kinetic 

Diffusion 



ROMAN Cédric – roman@amesim.com 

16 
PEMFC Stack Model 

  Core of model 
  electrochemical reaction 

  Interfaces 
  Electrical circuit 
  Electrolyte 
  Catalyst layer 

Electrical 
circuit 

Catalyst 
layer 

Electrolyte 
(membrane) 

  Reaction parameters 
  Stoechiometry in data file 

  Reference heat of formation, standard entropy 
  Kinetic parameters in data file 

  Partial orders, kinetic constant 
  Assymetry parameter 
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PEMFC Stack model 

  PEMFC cathode 
  Electrochemical reaction 
  Gas mixture equilibrium 

potential 
  Nernst equation 

  Overpotential 
  Activation Voltage       

– Equilibrium potential 
  = Disequilibrium 

  Reaction kinetic 
  Butler-Volmer equation 
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PEMFC Stack model 

  Gas mixture description 
 Dynamic description 
 Mixture of N species 
  Perfect gas equation of state 

 Real gas possible 
  Thermodynamic description 

  JANAF 71: Cp, h, u, s given by 5 order 
polynomial of temperature 
  Validity domain (200<->5000K) 

 Diffusion 
 Binary coefficients / Wilke formula  

 Water condensation/vaporisation (to come…) 

Predefined 
species 
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PEMFC Stack model 

Add-on Gas Mixture 

Basic Elements approach 

Powerful features 
Initialisation facility 

Compatibility with PCD/PN/THPN 
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PEMFC Stack model 

Add-on Fuel Cells 
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PEMFC Stack model 

  Possible Discretizations 
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PEMFC Stack model 
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PEMFC Stack model 

80 Nodes Model 

Serpentine configuration 
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AMESim Simulation 
 Comparison of different architectures 
(different flowcharts) 
 Design of the control of the PEMFC System  
 Start-up process 

 freeze start  
 Change of load 

 Drive cycle 
 Power demand 

PEMFC system simulation 

Power demand 
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PEMFC AMESim model 

  Allow quick results 
  Physical model 
  Transient behaviour 
  Gas diffusion efficiency 
  Thermal management 

  Robustness & Risk 
analysis 
  AMESim features 

  Monte-Carlo simulation 
  Design of experiment 
  Optimization 

Sensitivity Analysis 
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PEMFC AMESim model 

  Gain Time & Performance 

  Have a better understanding of physics 

  Use all powerfuls AMESim applications 
  Compatible with standard libraries 
  Activity index 
  Linear analysis (Bode, Nyquist, Nichols,…) 
  Design of Experiment / Optimization 
  Real-time 


